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Abstract
We consider the Grover search algorithm implementation for a quantum register of size =N 2k

using k (or +k 1) microwave- and laser-driven Rydberg-blockaded atoms, following the
proposal by Mølmer et al (2011 J. Phys. B 44 184016). We suggest some simplifications for the
microwave and laser couplings, and analyze the performance of the algorithm for up to k = 4
multilevel atoms under realistic experimental conditions using quantum stochastic (Monte Carlo)
wavefunction simulations.
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1. Introduction

Strong, long-range interactions between atoms in high-lying
Rydberg states make them attractive systems for quantum
information applications [1]. The interaction-induced level
shifts suppress resonant optical excitation of Rydberg states
of more than one atom within a certain blockade distance
from each other [1, 2]. This blockade effect can then be used
to implement quantum logic gate operations between closely
spaced atoms [3–8], or to realize atomic ensemble qubits with
Rydberg superatoms which can accommodate at most one
collective Rydberg excitation at a time [9–13].

The Grover quantum search algorithm [14], which offers
a quadratic speed-up of the search of unstructured databases
over classical search algorithms, is a paradigmatic example of
the power of quantum computation [15, 16]. The protocol
consists of repeated application of the query (oracle) and
inversion-about-the-mean (Grover) operations to a quantum
register composed of k qubits which can store 2k elements
(database entries).

As any other quantum computation procedure, both the
oracle and Grover operations can be implemented by a
sequence of standard, universal one- and two-qubit gates [15].

When the number of qubits k increases beyond just a few,
however, such implementations become quite complex and
experimental demonstrations of the Grover search algorithm
have so far been restricted to the case of k=2 [17–20].

In contrast, an efficient procedure to implement the
Grover search algorithm using the multi-atom interactions
mediated by the Rydberg blockade was proposed in [21]. In
that proposal, individual qubits are encoded in pairs of
metastable states of single atoms trapped in an array of
microtraps, and the oracle and Grover operations require only
simple sequences of excitation and de-excitation processes
between the qubit states and the Rydberg state in each atom.
Here we suggest a practical implementation of this proposal
with microwave and laser drivings of the atoms. We perform
extensive numerical simulations of the dynamics of the sys-
tem under realistic assumptions about the interatomic inter-
action strengths as well as atomic decay and dephasing
parameters. We present results for the success probabilities of
the Grover search with a moderate—but computationally non-
trivial—register size of k 4. We explore two different
interaction configurations proposed in [21], wherein the
blockade interaction is present either between any pair of
register atoms excited to the Rydberg state, or only between
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an auxiliary atom and each register atom. Both configurations
have advantages and disadvantages for the experimental
realization, and we find that they yield similar performance of
the algorithm.

2. The atomic system

Consider k atoms with the level scheme sketched in
figure 1(a). States ∣ ñ0 and ∣ ñ1 of each atom are the qubit basis
states. A time-dependent microwave field acts on the trans-
ition ∣ ∣ñ « ñ0 1 with the Rabi frequency ( ) ∣ ∣W = W ft emw mw

i

having real amplitude ∣ ∣Wmw and phase f. The corresponding
Hamiltonian for the jth atom is
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the microwave field detuning.
A resonant field, D = 0mw , applied to the atom leads to
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where ∣ ∣òq = W td is the pulse area [16]. Hence, q p= with
( )f p= 0 2 corresponds to the ( )X Yi i operation on the qubit

[15]. The Z gate can be realized as ( ) ( )p p =pU U Zi2 0 ,
which, for a fixed maximum amplitude of ∣ ∣W , takes twice the
time of the X or Y gate. The Hadamard gate can be realized as

( ) ( )p p =pU U H2 i2 0 , which takes 1.5 times longer than X
or Y. In what follows, we will only use the operations

( )p =U Xi0 and the Hadamard-like ( )ppU 22 which takes
only half the time of X.

Since the distance between the atoms is small—of the
order of a few μm [5–8] for the Rydberg blockade to be
effective (see below)—the microwave field with a long
wavelength of several cm affects all the atoms with the same
Rabi frequency. We assume that the frequency of the
microwave field can be tuned into, or detuned from, the
transition resonance ∣ ∣ñ « ñ0 1 of the unperturbed atoms. In
addition, we assume that using focused, non-resonant laser
beams we can induce ac Stark-shifts of e.g., state ∣ ñ1 of the
selected atoms to make the transition ∣ ∣ñ « ñ0 1 resonant
with the microwave field (when it is non-resonant otherwise),
or to detune it by a large amount ∣ ∣D Wmw mw (when it is
resonant otherwise) [22]. We can therefore selectively couple
or decouple the atoms to and from the global microwave field.

Each register atom j in state ∣ ñ1 can be excited by a
focused laser beam to a Rydberg state ∣ ñr , see figure 1(a).
This process is described by the Hamiltonian

[ ] ( )( ) ( ) ( ) ( ) ( )* s s= - W + WH , 3j j
r
j j

r
j

l
1

2 l 1 l 1

were ( )W j
l is the Rabi frequency, and we assume that the laser

is resonant for an unperturbed (not blockaded) atom, leading
to the same transformations as in equation (2) between states
∣ ñ1 and ∣ ñr . We will also employ an auxiliary (ancilla) atom a
with levels ∣ ñg and ∣ ñR similarly coupled by a focused
resonant laser, as shown in figure 1(b).

As in [21], we will consider two possible scenarios of
interatomic interactions. In the first case (see the inset of
figure 1(a)), any pair of register atoms i and j in state ∣ ñr
interact with each other via the long-range potential

∣ ∣
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where ri j, are the atomic positions, and p=3 or 6 for the
dipole–dipole or van der Waals interactions, respectively [1].
If the interaction-induced level shifts =V C rp ij

p
aa are large

enough, then an atom already excited to the Rydberg state ∣ ñr
will block subsequent excitation of all the other atoms. In the
second case (see the inset of figure 1(b)), we assume that the
register atoms do not interact with each other, but each
register atom j in state ∣ ñr interacts with the ancilla atom a in
state ∣ ñR via the potential

∣ ∣
( )( ) ( ) ( ) s s=

-
ÄH

C

r r
, 5j a p

j a
p rr

j
RR
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which can block the Rydberg excitation of the ancilla atom in
the presence of one or more ∣ ñr -state register atoms. This
situation occurs for example for certain configurations of
Rydberg excited states in rubidium and cesium [23].

We shall include in our treatment realistic atomic decay
and dephasing, leading to decoherence and loss of atoms
which strongly affect the outcome of the quantum compu-
tation. The atoms are subject to the following relaxation
processes: slow decays of level ∣ ñ1 to ∣ ñ0 with rate G1 and
level ∣ ñ0 to ∣ ñ1 with rate G0 [22]; the much faster decay of
the Rydberg state ∣ ñr with rate G = G + G + Gr r r ro0 1 which
has three contributions: the decay to ∣ ñ0 , to ∣ ñ1 and loss of
population to any other state represented in our model by ∣ ño
[8]; finally, we include dephasing gz on the qubit microwave

Figure 1. (a) Level scheme of the register atoms interacting with a
microwave field on the transition ∣ ∣ñ « ñ0 1 with Rabi frequency
Wmw, and with resonant laser field(s) on the transition ∣ ∣ñ « ñr1
with Rabi frequency Wl. The coupling of selected atoms with the
global microwave field can be made resonant ( ∣ ∣D Wmw mw ) or
strongly detuned ( ∣ ∣D Wmw mw ). State ∣ ño accounts for the loss of
the atom due to decay from ∣ ñr to any other state but ∣ ñ0 or ∣ ñ1 .
Inset: atoms in Rydberg states ∣ ñr interact with each other via a
strong, long-range potential ∣ ∣ WVaa l which suppresses Rydberg
excitation of all but one atom at a time. (b) Level scheme of an
ancilla atom whose transition ∣ ∣ñ « ñg R is driven by a focused
resonant laser with Rabi frequency Wl. Inset: the ancilla atom in
Rydberg state ∣ ñR interacts with all the ∣ ñr -state register atoms via
the strong potential Vaa, while the register atoms do not directly
interact with each other.
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transition ∣ ∣ñ « ñ0 1 and the typically much stronger
dephasing gr of the atomic polarization on the optical
transition ∣ ∣ñ « ñr1 due to, e.g., the laser phase fluctua-
tions, external field noise, and residual decay to ∣ ñ1 via a
non-resonant intermediate excited state ∣ ñe (relevant, when
∣ ∣ñ « ñr1 is a two-photon transition via ∣ ñe ). The
corresponding Lindblad generators [15, 16] for the decay
and dephasing processes are ( ) ( )s= GL j j

01 0 10 ,
( ) ( )s= GL j j

10 1 01 ,
( ) ( )s= GLr

j
r r

j
0 0 0 , ( ) ( )s= GLr

j
r r

j
1 1 1 , ( ) ( )s= GLro

j
ro or

j , and
( )( ) ( ) ( )g s= - L 2 2j

z
j j

mw 11 , ( )( ) ( ) ( )g s= - L 2 2j
r rr

j j
opt ,

where ( ) ( )sº åm mm j j is the unity operator for atom j.
For an isolated atom, the excitation linewidth of the

Rydberg state ∣ ñr (from state ∣ ñ1 ) is ∣ ∣ g= W Gw r rl 1 , where

( )g gº G + G +r r r1
1

2 1 and ∣ ∣  gW Gr rl
2

1 [16]. In what fol-
lows, we position the atoms such that the interaction-induced
level shifts V w10aa are sufficiently large for the Rydberg
blockade of any pair of register atoms i j, , or any register
atom j and ancilla atom a.

3. The search algorithm implementation

With the Grover algorithm, we search for one particular marked
element = -x b b bm k0 1 1 ( [ ]Îb 0, 1j ) in a database con-
taining =N 2k elements   = ¼x 00 0, 00 1, , 11 1.
The algorithm consists of the following steps [14–16]:

(0) prepare the k-qubit register in an equally-weighted

superposition ∣ ∣∣ ∣ñ º = å ññ+ ñ Ä⎡⎣ ⎤⎦s x
k

N x
0 1

2

1 of all N

possible states ∣ ñx ;
(1) apply to the register the oracle query operation which

shifts the phase of state ∣ ∣ ñ = ñ-x b b bm k0 1 1 by π

(flips the sign of cxm
) relative to all the other states ∣ ñx

of the superposition ∣å ñ= ¼
¼ c x ;x x00 0

11 1

(2) apply to the register the inversion about the mean
(Grover) operation.

The register preparation step (0) is applied only once.
The combined effect of steps (1) and (2) is to increase the
amplitude cxm

of state ∣ ñxm by ~ N1 at the expense of
amplitudes cx of all the other states ∣ ñx . Steps (1) and (2) are
thus applied repeatedly, ~ N times, until the probability of
the marked state approaches unity, at which time it is
measured.

We now examine in some detail the implementation of
each of the above steps, along the lines of the proposal of [21]
with a view of possible experimental realization [8, 22].

(0) The register preparation step in [21] is performed in the
standard way by applying the Hadamard gate H to all
the register atoms initially in state ∣ ñ0 . The resonant
microwave implementation of H would involve
p p+ 2 pulses which take 1.5 times the duration of
the X gate, but the initial superposition state can also be
obtained by the shorter transformation ( )pp-U 22
applied simultaneously to all the atoms (qubits) in state
∣ ñ0 : ( ) ∣ [ ∣ ∣ ]p ñ  ñ + ñp-U 2 0 0 1 22 .

(1) In the oracle step, the protocol of [21] applies
sequentially to each register atom = ¼ -j k0, 1, , 1
a π-pulse ( )pU0 between states ∣ - ñb1 j and ∣ ñr using
focused laser beams; if any one atom is transferred to
∣ ñr , then all the subsequent atoms remain in their initial
state ∣ ñ0 or ∣ ñ1 due to the Rydberg blockade (assuming
the interaction scenario of equation (4)). This is then
followed by the same operation ( )pU0 on all the register
atoms in the reverse order to bring the atom in Rydberg
state ∣ ñr back to its initial state. The result of this
transformation is that any state of the register
∣ m m m ñ-k0 1 1 (m = 0, 1) having one or more digits
different from the marked state ∣  ñ-b b bk0 1 1 will
undergo one (and not more than one, due to the
Rydberg blockade) full Rabi cycle via the Rydberg state
and accumulate a π phase shift, while only the marked
state ∣  ñ-b b bk0 1 1 will remain unchanged.

We now assume that the Rydberg exciting lasers
with fixed frequency act only on the transition
∣ ∣ñ  ñr1 . We should therefore implement the oracle
step by applying first the b Xj transformation to each
register atom, which flips the qubit states ∣ ñ0 and ∣ ñ1 if
bj=1 and does nothing otherwise, and then apply the
Rydberg excitation and de-excitation lasers, followed
again by the b Xj . To implement the b Xj with our setup,
we apply the global microwave ( )p =U Xi0 pulses to all
the atoms simultaneously, but we use Stark lasers to
adjust each atom’s detuning with respect to the
microwave frequency to ( )- Db1 j mw, respectively [22].

(2) In the Grover step, [21] proposes to transfer sequen-
tially each register atom in state [ ∣ ∣ ]ñ - ñ0 1 2 to the
Rydberg state ∣ ñr and then back in reverse order, while
leaving the atoms in the ‘dark’ state [ ∣ ∣ ]ñ + ñ0 1 2
unaffected by the Rydberg lasers. Again, Rydberg
excitation of any one atom would block subsequent
excitation of the other atoms (assuming the interactions
of equation (4)). This transformation leaves the equally-
weighted superposition state ∣ ñs unchanged, while
flipping the sign of all the other orthogonal states of
the register, which results in the inversion about the
mean operation [14–16].

We implement this Grover operation by first
applying to all the atoms simultaneously the microwave

( )ppU 22 pulse which results in transformation

( )[ ∣ ∣ ] ∣
( )[ ∣ ∣ ] ∣
p

p

ñ + ñ  ñ

ñ - ñ - ñ
p

p

U

U

2 0 1 2 0 ,

2 0 1 2 1 .

2

2

We then apply the resonant Rydberg excitation and de-
excitation lasers on the transition ∣ ∣ñ  ñr1 . Finally,
we apply to all the atoms simultaneously the microwave

( )pp-U 22 pulse which leads to

( ) ∣ [ ∣ ∣ ]
( )( ∣ ) [ ∣ ∣ ]

p

p

ñ ñ + ñ

- ñ  ñ - ñ
p

p

-

-

U

U

2 0 0 1 2 ,

2 1 0 1 2 ,

2

2

as was required.
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In both steps (1) and (2) above, the conditional logic
operations rely on the Rydberg blockade. In the interaction
scenario of equation (4) (i.e., any pair of register atoms in
state ∣ ñr strongly interact with each other), we apply the
Rydberg excitation laser π-pulses ( )pU0 between states ∣ ñ1
and ∣ ñr sequentially to atoms = ¼ -j k0, 1, , 1, followed by
the same de-excitation π-pulses ( )pU0 applied to the atoms in
the reverse order = - - ¼j k k1, 2, ,0 [21]. In the
experimentally slightly simpler case of interaction of
equation (5) involving an ancilla atom (i.e., any register atom
in state ∣ ñr interacts only with the ancilla atom blocking its
excitation to state ∣ ñR ), we can apply the Rydberg excitation
laser π-pulse ( )pU0 to all the register atoms j simultaneously,
transferring any atom in state ∣ ñ1 to state ∣ ñr . We then apply a
p2 -pulse ( )pU 20 to the ancilla atom on the transition
∣ ∣ñ « ñg R : if one or more register atoms are in state ∣ ñr , the
ancilla atom will remain in state ∣ ñg due to the Rydberg
blockade; and only if no register atom is in state ∣ ñr , the
ancilla atom will undergo a full Rabi cycle between states ∣ ñg
and ∣ ñR resulting in the sign change of the state of the
combined system consisting of the register atoms and the
ancilla. We then apply simultaneously to all the register atoms
the de-excitation laser π-pulse ( )ppU with the opposite sign
(f p=l phase) of the Rabi frequency Wl so as to avoid the
sign change of state ∣ ñ1 .

To illustrate the foregoing discussion, in figures 2 and 3
we plot the time-dependence of the microwave and laser
pulses and the resulting coherent dynamics of populations of
the atomic states. In these figures, we show one full iteration
of the search algorithm with k=2 register atoms (plus the
ancilla in figure 3) and a representative marked input,
assuming negligible relaxation rates.

4. Results of simulations

We simulate the dissipative dynamics of the system of k
atoms using the quantum stochastic (Monte Carlo) wave-
functions method [16, 24]. Using realistic experimental
parameters, we test various inputs  -b b bk0 1 1 and for each
input generate many independent trajectories for the time-
evolution of the wavefunction of the system.

We assume that after each run, the experimentalist per-
forms a projective measurement of all the register atoms
(qubits) onto state ∣ ñ0 . Then the negative outcome of the
measurement on some atom j (i.e. the atom is not in state ∣ ñ0 )
would lead the experimentalist to assume bj=1 (and the
atom is in state ∣ ñ1 ), but the same measurement outcome
would correspond also to atom j being lost all together (the
atom is in state ∣ ño ). Thus, if we average over all possible
inputs, a loss of an atom still leads to correct measurement
result half of the time. It is a special feature of our Rydberg
blockade implementation of the search algorithm that if an
atom is lost during the calculation, the oracle and Grover
operations still apply correctly to the remaining string of
qubits [25] .

In figures 4 and 5 we show the result of our simulations
for the interaction configurations of figures 1(a) and (b)
(equations (4) and (5)) without and with the ancilla atom,
respectively. The probabilities of detecting the system in the
correct marked state ∣  ñ-b b bk0 1 1 are obtained upon aver-
aging over many independent realizations (trajectories) of the
numerical experiment. More precisely, for an input of say

=b b b 0100 1 2 we calculate the probability of detecting the
system in state ∣m m m= ¹ = ñ0, 0, 00 1 2 (m ¹ 0 is either
m = 1 or m = o).

In both figures 4 and 5 we obtain similar results; only for
very strong decay of the Rydberg state corresponding to
panels (c1, c2) the scheme with the ancilla atom performed

Figure 2. Time-dependence of the microwave and laser fields (top)
acting on atoms j=0, 1 (see the legend for color code), and
populations ( )sá ñmm

j of states ∣m = ñr0, 1, of the corresponding atoms
(main panel), for one iteration of the search algorithm in a quantum
register of k=2 atoms interacting via equation (4). The marked
input is =b b 010 1 .

Figure 3. Same as in figure 2, but with ancilla atom a interacting
with register atoms j=0, 1 via equation (5).
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somewhat worse, even though we neglected the decay and
dephasing of the ancilla in figure 5 for a fair comparison with
figure 4. This is due to the fact that the scheme with the
ancilla permits multiple Rydberg excitations of the register
atoms, leading to their larger aggregate probability of decay
and loss.

We note that, for moderate values of the atomic decay
and dephasing, digits bj=0 in the marked element tend to
cause larger error in the outcome, because the microwave
detuning ∣ ∣D = W25mw mw , which suppresses the X gate on
atom j during the oracle operation, is large but still finite.
More important are the relaxation processes which sig-
nificantly degrade the performance of the algorithm with
increasing evolution time. As a consequence, the probability
for the correct measurement outcome may peak after fewer
iterations than would be required to reach unity in the ideal
case. It turns out that the errors due to the decay and
dephasing on the qubit transition ∣ ∣ñ « ñ0 1 play a minor
role, despite the slowness of the operations performed by the
microwave field with small Rabi frequency [22]. The larger
decay rate Gr 5–100× -10 s3 1 and higher probability of
atom loss from the Rydberg state [8] are more damaging, and
the most harmful element is the large dephasing g = -10 sr

5 1

of Rydberg transition. So either the laser Rabi frequency on
the Rydberg transition should be increased, as in panels (a2,
b2, c2) of figures 4 and 5, so that the decay and dephasing
have less time to destroy the atomic coherences, or gr should
be reduced. While for the dephasing rate gr we took a typical
experimental value, there is no theoretical argument why this
value could not be reduced by an order of magnitude or more.

5. Summary

To conclude, we have studied the Grover search algorithm
implementation with several Rydberg blockaded atoms under
realistic experimental conditions including the choice of
parameters for the atomic decay, dephasing and interaction
strengths. We have shown that relaxation processes cause
decoherence during the quantum computation and reduce the
probability of the correct outcome after a few iterations of the
oracle and Grover steps.

The remarkable property of the Grover algorithm is that it
can tolerate moderate amount of errors without error correc-
tion, with the measurement on the final state of the system
still leading to increased probability of the sought-after ele-
ment of the database. When the probability for the correct
outcome is larger than all the probabilities for incorrect out-
comes, one may have recourse to perform several exper-
imental runs and measurements and obtain the correct result
by a majority vote.
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Figure 4. Probabilities of measuring correct outcomes  -b b bk0 1 1 of
the Grover search versus number of iterations, for =k 2, 3, 4 digit
register (black, blue, red, respectively) with the interaction scheme of
figure 1(a) (equation (4)), obtained from averaging over 200
independent trajectories for the system wavefunction. The marked
inputs for the filled symbols are 01, 010, 0101; other inputs, e.g.,
00, 000, 0000 and 11, 111, 1111 shown with open symbols, lead to
close results to within±5% for (a1, a2, b1, b2), or are more divergent
for (c1, c2) (typically, success probabilities for inputs ¼11, are better
than for ¼00, , see the text for discussion). The Rabi frequency of the
Rydberg excitation laser is ∣ ∣ pW = ´2 0.5l MHz in the left panels
(a1, b1, c1) and ∣ ∣ pW = ´2 2l MHz in the right panels (a2, b2, c2).
The Rydberg state decay is taken ( )G = ´ -1, 4.76, 100 10 sr

3 1 in (a,
b, c), respectively, with G = Gro r

7
8

and G G = G,r r r0 1
1

16
. The dephasing

rates on the Rydberg transitions are ( )g = ´ -1, 10, 100 10 sr
3 1 in

(a, b, c), respectively. Other parameters, common to all the graphs, are
gG G = =- -, 2 s , 100 sz0 1

1 1, ∣ ∣ pW = ´2 20mw kHz (X gate time is
m25 s), and ∣ ∣D = W25mw mw , while the time interval between the

gates is d =t 50 ns.

Figure 5. Same as in figure 4, but for the interaction scheme of
figure 1(b) (equation (5)). Decay and dephasing of the ancilla atom
are neglected.
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